Goto

Collaborating Authors

 Canary Islands


MOHPER: Multi-objective Hyperparameter Optimization Framework for E-commerce Retrieval System

arXiv.org Artificial Intelligence

E-commerce search optimization has evolved to include a wider range of metrics that reflect user engagement and business objectives. Modern search frameworks now incorporate advanced quality features, such as sales counts and document-query relevance, to better align search results with these goals. Traditional methods typically focus on click-through rate (CTR) as a measure of engagement or relevance, but this can miss true purchase intent, creating a gap between user interest and actual conversions. Joint training with the click-through conversion rate (CTCVR) has become essential for understanding buying behavior, although its sparsity poses challenges for reliable optimization. This study presents MOHPER, a Multi-Objective Hyperparameter Optimization framework for E-commerce Retrieval systems. Utilizing Bayesian optimization and sampling, it jointly optimizes both CTR, CTCVR, and relevant objectives, focusing on engagement and conversion of the users. In addition, to improve the selection of the best configuration from multi-objective optimization, we suggest advanced methods for hyperparameter selection, including a meta-configuration voting strategy and a cumulative training approach that leverages prior optimal configurations, to improve speeds of training and efficiency. Currently deployed in a live setting, our proposed framework substantiates its practical efficacy in achieving a balanced optimization that aligns with both user satisfaction and revenue goals.


The Robustness of Structural Features in Species Interaction Networks

arXiv.org Artificial Intelligence

Species interaction networks are a powerful tool for describing ecological communities; they typically contain nodes representing species, and edges representing interactions between those species. For the purposes of drawing abstract inferences about groups of similar networks, ecologists often use graph topology metrics to summarize structural features. However, gathering the data that underlies these networks is challenging, which can lead to some interactions being missed. Thus, it is important to understand how much different structural metrics are affected by missing data. To address this question, we analyzed a database of 148 real-world bipartite networks representing four different types of species interactions (pollination, host-parasite, plant-ant, and seed-dispersal). For each network, we measured six different topological properties: number of connected components, variance in node betweenness, variance in node PageRank, largest Eigenvalue, the number of non-zero Eigenvalues, and community detection as determined by four different algorithms. We then tested how these properties change as additional edges -- representing data that may have been missed -- are added to the networks. We found substantial variation in how robust different properties were to the missing data. For example, the Clauset-Newman-Moore and Louvain community detection algorithms showed much more gradual change as edges were added than the label propagation and Girvan-Newman algorithms did, suggesting that the former are more robust. Robustness also varied for some metrics based on interaction type. These results provide a foundation for selecting network properties to use when analyzing messy ecological network data.


Human-Artificial Interaction in the Age of Agentic AI: A System-Theoretical Approach

arXiv.org Artificial Intelligence

This paper presents a novel perspective on human-computer interaction (HCI), framing it as a dynamic interplay between human and computational agents within a networked system. Going beyond traditional interface-based approaches, we emphasize the importance of coordination and communication among heterogeneous agents with different capabilities, roles, and goals. A key distinction is made between multi-agent systems (MAS) and Centaurian systems, which represent two different paradigms of human-AI collaboration. MAS maintain agent autonomy, with structured protocols enabling cooperation, while Centau-rian systems deeply integrate human and AI capabilities, creating unified decision-making entities. To formalize these interactions, we introduce a framework for communication spaces, structured into surface, observation, and computation layers, ensuring seamless integration between MAS and Centaurian architectures, where colored Petri nets effectively represent structured Cen-taurian systems and high-level reconfigurable networks address the dynamic nature of MAS. Our research has practical applications in autonomous robotics, human-in-the-loop decision making, and AI-driven cognitive architectures, and provides a foundation for next-generation hybrid intelligence systems that balance structured coordination with emergent behavior. Keywords: multi-agent systems centaurian systems communication spaces satellite and swarm robots large action models (LAMs). 1 Introduction Agentic AI systems--capable of iterative planning, autonomous task decomposition, and continuous learning--are rapidly reshaping the landscape of human-computer interaction (HCI). Recent advances in Large Language Models (LLMs) and advanced conversational agents have revitalized the field of multi-agent systems, whose roots in Artificial Intelligence predate the current rise of generative AI. Historically, multi-agent systems relied on agents with relatively constrained capabilities; however, the emergence of powerful, conversationally Corresponding author: uwe.borghoff@unibw.de


rEGGression: an Interactive and Agnostic Tool for the Exploration of Symbolic Regression Models

arXiv.org Artificial Intelligence

Regression analysis is used for prediction and to understand the effect of independent variables on dependent variables. Symbolic regression (SR) automates the search for non-linear regression models, delivering a set of hypotheses that balances accuracy with the possibility to understand the phenomena. Many SR implementations return a Pareto front allowing the choice of the best trade-off. However, this hides alternatives that are close to non-domination, limiting these choices. Equality graphs (e-graphs) allow to represent large sets of expressions compactly by efficiently handling duplicated parts occurring in multiple expressions. E-graphs allow to store and query all SR solution candidates visited in one or multiple GP runs efficiently and open the possibility to analyse much larger sets of SR solution candidates. We introduce rEGGression, a tool using e-graphs to enable the exploration of a large set of symbolic expressions which provides querying, filtering, and pattern matching features creating an interactive experience to gain insights about SR models. The main highlight is its focus in the exploration of the building blocks found during the search that can help the experts to find insights about the studied phenomena.This is possible by exploiting the pattern matching capability of the e-graph data structure.


Improving Genetic Programming for Symbolic Regression with Equality Graphs

arXiv.org Artificial Intelligence

The search for symbolic regression models with genetic programming (GP) has a tendency of revisiting expressions in their original or equivalent forms. Repeatedly evaluating equivalent expressions is inefficient, as it does not immediately lead to better solutions. However, evolutionary algorithms require diversity and should allow the accumulation of inactive building blocks that can play an important role at a later point. The equality graph is a data structure capable of compactly storing expressions and their equivalent forms allowing an efficient verification of whether an expression has been visited in any of their stored equivalent forms. We exploit the e-graph to adapt the subtree operators to reduce the chances of revisiting expressions. Our adaptation, called eggp, stores every visited expression in the e-graph, allowing us to filter out from the available selection of subtrees all the combinations that would create already visited expressions. Results show that, for small expressions, this approach improves the performance of a simple GP algorithm to compete with PySR and Operon without increasing computational cost. As a highlight, eggp was capable of reliably delivering short and at the same time accurate models for a selected set of benchmarks from SRBench and a set of real-world datasets.


Investigating Cost-Efficiency of LLM-Generated Training Data for Conversational Semantic Frame Analysis

arXiv.org Artificial Intelligence

Recent studies have demonstrated that few-shot learning allows LLMs to generate training data for supervised models at a low cost. However, the quality of LLM-generated data may not entirely match that of human-labeled data. This raises a crucial question: how should one balance the trade-off between the higher quality but more expensive human data and the lower quality yet substantially cheaper LLM-generated data? In this paper, we synthesized training data for conversational semantic frame analysis using GPT-4 and examined how to allocate budgets optimally to achieve the best performance. Our experiments, conducted across various budget levels, reveal that optimal cost-efficiency is achieved by combining both human and LLM-generated data across a wide range of budget levels. Notably, as the budget decreases, a higher proportion of LLM-generated data becomes more preferable.


Surveying You Only Look Once (YOLO) Multispectral Object Detection Advancements, Applications And Challenges

arXiv.org Artificial Intelligence

Multispectral imaging and deep learning have emerged as powerful tools supporting diverse use cases from autonomous vehicles, to agriculture, infrastructure monitoring and environmental assessment. The combination of these technologies has led to significant advancements in object detection, classification, and segmentation tasks in the non-visible light spectrum. This paper considers 400 total papers, reviewing 200 in detail to provide an authoritative meta-review of multispectral imaging technologies, deep learning models, and their applications, considering the evolution and adaptation of You Only Look Once (YOLO) methods. Ground-based collection is the most prevalent approach, totaling 63% of the papers reviewed, although uncrewed aerial systems (UAS) for YOLO-multispectral applications have doubled since 2020. The most prevalent sensor fusion is Red-Green-Blue (RGB) with Long-Wave Infrared (LWIR), comprising 39% of the literature. YOLOv5 remains the most used variant for adaption to multispectral applications, consisting of 33% of all modified YOLO models reviewed. 58% of multispectral-YOLO research is being conducted in China, with broadly similar research quality to other countries (with a mean journal impact factor of 4.45 versus 4.36 for papers not originating from Chinese institutions). Future research needs to focus on (i) developing adaptive YOLO architectures capable of handling diverse spectral inputs that do not require extensive architectural modifications, (ii) exploring methods to generate large synthetic multispectral datasets, (iii) advancing multispectral YOLO transfer learning techniques to address dataset scarcity, and (iv) innovating fusion research with other sensor types beyond RGB and LWIR.


The real Atlantis? Scientists discover lost islands that sank off the coast of the Canary Islands millions of years ago - and claim they could have been the inspiration for the famous legend

Daily Mail - Science & tech

Atlantis is the world's most famous fictional island, invented by Greek philosopher Plato 2,300 years ago. But Spanish researchers claim to have found the source of his inspiration โ€“ a series of sunken islands off the northwest coast of Africa. The former islands would have been close to the modern-day Canary Islands, but they sunk millions of years ago, the experts think. They've christened the now-submerged lands'Los Atlantes', in reference to the myth of Atlantis which still persists today. Luis Somoza, a marine geologist at Geological Survey of Spain (IGME-CSIC), told Live Science: 'This could be the origin of the Atlantis legend.'


Efficient Document Ranking with Learnable Late Interactions

arXiv.org Machine Learning

Cross-Encoder (CE) and Dual-Encoder (DE) models are two fundamental approaches for query-document relevance in information retrieval. To predict relevance, CE models use joint query-document embeddings, while DE models maintain factorized query and document embeddings; usually, the former has higher quality while the latter benefits from lower latency. Recently, late-interaction models have been proposed to realize more favorable latency-quality tradeoffs, by using a DE structure followed by a lightweight scorer based on query and document token embeddings. However, these lightweight scorers are often hand-crafted, and there is no understanding of their approximation power; further, such scorers require access to individual document token embeddings, which imposes an increased latency and storage burden. In this paper, we propose novel learnable late-interaction models (LITE) that resolve these issues. Theoretically, we prove that LITE is a universal approximator of continuous scoring functions, even for relatively small embedding dimension. Empirically, LITE outperforms previous late-interaction models such as ColBERT on both in-domain and zero-shot re-ranking tasks. For instance, experiments on MS MARCO passage re-ranking show that LITE not only yields a model with better generalization, but also lowers latency and requires 0.25x storage compared to ColBERT.


Creating an AI Observer: Generative Semantic Workspaces

arXiv.org Artificial Intelligence

An experienced human Observer reading a document -- such as a crime report -- creates a succinct plot-like $\textit{``Working Memory''}$ comprising different actors, their prototypical roles and states at any point, their evolution over time based on their interactions, and even a map of missing Semantic parts anticipating them in the future. $\textit{An equivalent AI Observer currently does not exist}$. We introduce the $\textbf{[G]}$enerative $\textbf{[S]}$emantic $\textbf{[W]}$orkspace (GSW) -- comprising an $\textit{``Operator''}$ and a $\textit{``Reconciler''}$ -- that leverages advancements in LLMs to create a generative-style Semantic framework, as opposed to a traditionally predefined set of lexicon labels. Given a text segment $C_n$ that describes an ongoing situation, the $\textit{Operator}$ instantiates actor-centric Semantic maps (termed ``Workspace instance'' $\mathcal{W}_n$). The $\textit{Reconciler}$ resolves differences between $\mathcal{W}_n$ and a ``Working memory'' $\mathcal{M}_n^*$ to generate the updated $\mathcal{M}_{n+1}^*$. GSW outperforms well-known baselines on several tasks ($\sim 94\%$ vs. FST, GLEN, BertSRL - multi-sentence Semantics extraction, $\sim 15\%$ vs. NLI-BERT, $\sim 35\%$ vs. QA). By mirroring the real Observer, GSW provides the first step towards Spatial Computing assistants capable of understanding individual intentions and predicting future behavior.